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Analytic Sensitivity and Approximation of Skin Buckling
Constraints in Wing-Shape Synthesis

Eli Livne* and Radomir Milosavljevict
University of Washington, Seattle, Washington 98195

Explicit expressions for terms of the stiffness and geometric stiffness matrices are derived for the buckling
analysis of trapezoidal fiber composite wing skin panels. The formulation is based on Ritz analysis using simple
polynomials, and leads to explicit expressions for the analytic sensitivities of the stiffness and geometric stiffness
matrices with respect to layer thickness, fiber directions, and panel shape. Integration with wing box analysis
using either the equivalent plate approach or the finite element method, makes it possible to obtain sensitivities
of panel buckling constraints with respect to wing planform shape or locations of internal ribs and spars. The
analytic sensitivities are used to construct approximations of panel buckling constraints for integrated wing/
panel design synthesis.

Nomenclature
[A] = in-plane local stiffness matrix for the

plate, 3 x 3
[D] — out-of-plane local stiffness matrix for the

plate, 3 x 3
FB(x, y) — weight function ensuring zero

displacement on panel boundary
F?f = coefficients in the polynomial expression

for [F3], Eq. (30)
[F,], [F2], [F3] = matrices containing admissible functions

and their derivatives, Eqs. (2-4)
fi(x-> y} = admissible functions
//,/, = coefficients of wing depth polynomial

depth of wing
total thickness of panel
integral of a simple polynomial term over
trapezoidal panel area
indices of terms in layer thickness
polynomials
stiffness and geometric stiffness matrix,
respectively
internal moments per unit length
powers of x and y in elements of [F2],
Eq. (51)
powers of x and y in a polynomial term
powers of x and y in the wing depth
series
powers of x and y for elements of a:
powers of x and y in polynomial terms of
[F3],Eq. (15)
powers of x and y in polynomial series
for thickness of layer /
powers of x and y in Ritz functions,
Eq. (17)
2x2 matrix of in-plane loads, Eq. (5)
number of terms in the thickness
polynomial for layer /
number of layers
in-plane loads per unit length

//(*, y)
h
/,-R

/, /,, /2

[K], [Kc]

Mv, A/v, Mxv
mf2l'ip, nf2c'.p

m, n
mh, nh

Wqw^wi nclw pw
ra}1, wy, n"

m"p, n"p

[N]

NL
Nx, Nv, Nxy
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\Q] = 3 x 3 constitutive matrix for a layer,
^ Eq. (22)
[Q] = material properties matrix, Eqs. (20)

and (21)
<7/^ fa} = generalized displacement and the vector

of generalized displacements for panel
R, S = coefficients of front line or aft line of

panel
Tj = coefficient j in the polynomial series for

layer /
tf(x, y) = thickness of layer /
Uj, Vj = shape dependent coefficients of FB, Eqs.

(15) and (16)
Wf/w pw = coefficients of polynomial elements of a
wl(x, y) = panel elastic out-of-plane displacement
[a] = matrix of function derivatives defined in

Eq. (41)
6 = fiber orientation angle
A = buckling eigenvalue

Subscripts
A = aft (rear)
F = front
L = left
R = right

Introduction

B UCKLING of skin panels in thin-walled structures is one
of the most important failure modes to be considered in

any design synthesis. A rich body of literature exists today
on the buckling of isotropic and anisotropic panels.1 5 It re-
flects the extensive experience in this area, based on theo-
retical development, numerical investigations, and numerous
tests.

While the study of isolated panels of rectangular shape has
reached certain maturity, research addressing the buckling of
panels functioning as components in a larger structural system
is still evolving. In the complete structure, such as an airplane
wing or fuselage, buckling can occur locally (when a particular
panel buckles) or globally (when a segment of the structure,
containing several panels, buckles). The need to assess global
behavior (for internal force distributions or global buckling)
and local behavior (panel buckling) simultaneously, leads to
computationally intensive analysis. The complex global-local
interactions can also make buckling constraints highly non-
linear in terms of the structural design variables. Thus, in the
context of airframe structural optimization, proper represen-
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tation of buckling constraints is a major challenge, and it is
still an area of active research.6"15

When wing planform becomes subject to design optimi-
zation in addition to the sizing of structural members, or when
variation of the internal structure is allowed, the panel buck-
ling problem becomes more complex. In the more general
case, panels (as defined by the array of ribs and spars that
supports them) are rarely rectangular. They are usually trap-
ezoidal in shape. Moreover, while in high AR wings it may
be acceptable to assume unidirectional compression on the
skin panels, in low AR wings panels are usually loaded by in-
plane loads in an inherently combined manner.

It is important, then, to develop an efficient buckling anal-
ysis methodology, applicable to trapezoidal panels in com-
bined in-plane loading.16"18 Such a methodology should be
design-oriented, i.e., issues of sensitivity analysis and ap-
proximation concepts should be addressed from the outset.
Integration of the wing box global analysis with the local panel
buckling analysis should be fast computationally. The result
should be an efficient structural analysis, sensitivity, and ap-
proximation tool for wing shape optimization, including stress,
deformation, dynamic behavior, and panel buckling con-
straints.

In this article, a method for buckling analysis of trapezoidal
wing composite skin panels is presented. Analytic sensitivities
of buckling constraints with respect to sizing, fiber directions,
and panel shape are derived. Integration of the resulting buck-
ling analysis with an approximate wing box structural analysis
based on the equivalent plate approach19'21 or finite element
analysis is discussed. Alternative approximation techniques
are assessed. Lessons learned and the resulting recommen-
dations will help guide further developments on the way to
effective wing shape optimization in the preliminary design
stage.

This article opens by deriving the general equations for
panel buckling analysis for simply supported trapezoidal panels.
The Ritz method, using polynomial admissible functions, is
employed. Detailed derivations, taking advantage of the sim-
plicity of manipulation of polynomials, demonstrate how stiff-
ness and geometric stiffness terms can be expressed in terms
of sizing, fiber direction, and shape design variables explicitly.
The integration of wing box structural analysis with panel
buckling analysis is discussed next, followed by a method for
the computation of analytic sensitivities. Results of numerical
evaluations and lessons learned conclude the presentation.

Ritz Panel Buckling Analysis
and Constraint Formulation

Stability Equations
Based on the principle of virtual work, a variational equa-

tion for a symmetrically layered composite plate under the
action of internal bending moments and transverse shear forces
in the absence of transverse load or initial deformation is

r r 2wi
n}[D]S \ w'yy \ dxdy

where the vertical deflection due to load is wl(x, y). The
matrices [D] (and a corresponding matrix [A]) are the 3 x 3
local transverse stiffness (and in-plane stiffness) matrices, re-
spectively. L2 In the case of a symmetrically layered panel, the
in-plane loads Nx, Nv, and Nxy are related to the in-plane
strains {e" e(}

v y",} through the matrix [A]. The bending mo-
ments A/v, Mv, and Mxy are related to the bending curvatures
due to load { — wl

xx -w\y -2wl
vv} through the matrix [D]

(Refs. 1 and 2).

The unknown elastic panel deflection w \xy) is approximated
by a series of admissible functions:

— lfl(x,y) J2(x,y)

(2)

The first derivatives, then, can be expressed as

*".V
= [F2]{q] (3)

and the second derivatives are given by

^-| r/,.,, /,- ••• /^-i 'J1'".',, = /,.„ /2,,, ••• /*,>, M2 = [/v
w.'«J L2/,.,v 2/2.,v ••• 2/w,J

^/V

yw
(4)

In the previous expressions the matrices [F,], [F2], and [F3]
are all functions of x and v. Using Eqs. (2-4) to express virtual
displacements and their derivatives in terms of virtual gen-
eralized displacements, 8wl = [Fi]{8q], Eq. (1) leads to

{g}Tll[F,nD][F,]dxdy{Sq}

+ [q}r jI [Fi]T[N][F2] dx dy (5)

where

[N] = N

The matrix equation for the linear buckling analysis of the
panel is thus

[[K] + A[KG]]{<?} = {0}

where the stiffness matrix is

[K]NXN = [F,nD][F3] dx dy

and the geometric stiffness matrix is

[KC]NXN = (F2]T(N][F2] dx dy

(6)

(7)

(8)

The scalar A is used as a scaling parameter increasing or
decreasing the given in-plane loads NfJ simultaneously, to de-
termine whether the panel is stable or unstable. Equation (6)
is a generalized linear eigenvalue problem. Since the stiffness
and geometric stiffness matrices are real and symmetric, the
eigenvalues are real. The buckling constraint for the panel is
in the form

- Amin < 0 (9)

assuring that the given in-plane loads have to be increased to
reach instability.
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Simple Polynomials for Modeling and Approximation
Admissible functions based on simple polynomials, as is

well known,28 lead to ill-conditioned system matrices. As the
order of the approximation polynomials is increased, high-
order terms and low-order terms appear simultaneously in the
stiffness and geometric stiffness matrices. Large differences
in order of magnitude among those terms will lead to ill-
conditioned linear equation and eigenvalue solutions on a
finite word-length computer. Unless convergence of the so-
lution is obtained with low-order polynomials, it may become
impossible to achieve convergence at all, if the order of
polynomial functions is increased to the point where the equa-
tions become ill conditioned.

Still, simple polynomials offer significant advantages in
structural analysis, especially in the case of beam- and plate-
like structures. Simple polynomials are easily manipulated,
and therefore, the formulation of the problem for solution
becomes quite simple. They can also lead to integrals that
may be evaluated analytically. Numerical quadrature is not
required, and the solution process becomes significantly faster.
Simple polynomials have been used as admissible functions
in plate vibration problems29-10 and in shells.31 In the context
of wing optimization, simple polynomials were found to lead
to acceptable deformation, stress, and mode shapes in wings
of quite complex planforms.21"27 The resulting structural anal-
ysis capabilities were found to be very efficient computation-
ally.

When planform shape variations are allowed (in addition
to sizing changes, during wing optimization), using simple
polynomials for structural analysis makes it possible to obtain
structural shape sensitivities analytically. As Ref. 25 shows,
it is possible to obtain closed-form expressions for the shape
derivatives of wing box stiffness and mass terms avoiding
numerical quadrature. In wing design-oriented structural
analysis involving shape design variables, there is a need to
evaluate buckling constraints for panels whose shape is chang-
ing. Buckling constraint sensitivities with respect to the shape
of a panel, linked to variations in the shape of the wing, are
also required. Based on existing experience with wing box
modeling and shape sensitivity analysis, simple polynomials
(multiplied by appropriate weight polynomial functions) are
used in the present work for the panel buckling analysis. The
simplicity of formulation, computational efficiency, and ease
with which analytical shape sensitivities are obtained provide
the motivation. Convergence studies show fast convergence
with a small number of polynomial terms and no ill-condi-
tioning problems. Straightforward integration of local level
panel and global level wing box solutions is an additional
advantage.

Modeling
In the polynomial-based wing box analysis, the thickness

of fibers in different directions is given by simple polynomials.
For layer / (out of NL layers)

T2x

i = 1,NL (10)

The powers m'k and n'k are x and y powers of the A:th term
of the thickness series for the /th layer. The coefficients T(
serve as sizing-type design variables. Unlike many studies, in
which wing trapezoidal segments are transformed into a unit
square for numerical quadrature, here the thickness poly-
nomial is given in terms of the physical x, y coordinates (Fig.
1). The overall thickness of skin panels is given by Eq. (10)

v> = 2 '«,.„ = 2
/= 1

XFL - — — —

XFR

XAL

Fig. 1 Wing planform, internal structure, and skin panels geometry:
panel shape design variables.

In a similar manner, cap areas for the spars and ribs of the
wing box model are also expressed as simple polynomials of
either* (for ribs) or y (for spars).21~23-25~27 Depth of the wing
box is also given by a simple polynomial in x and y, to be
defined later.

Admissible Functions
Figure 1 shows a trapezoidal panel defined by coordinates

of its vertices in the ;c, y axes. The subscripts L and R denote
left and right sides, respectively. The subscripts F and A de-
note front and aft lines, respectively, and XF and XA are the
x coordinates of the forward and rear points on a line parallel
to the sides of the panel. Based on Fig. 1, we can write the
following equation for points on the front line:

Xp(y)= V SFy

(12)

In a similar way, on the rear line, expressing XA in terms
of y leads to

(13)

The function FB(x, y) = [x- SFy - RF][x - SAy - RA][y
- yL][y - yR] satisfies the zero displacement boundary con-
ditions on the circumference of the panel. Using Eqs. (12)
and (13), and expanding in terms of x and y yields

^(,,v) - (*/, + u2y +
x [V, + V2x + V3y

and, using index notation

^<,,,, = i U.y"" £
/ = ! y = l

V5xy + V6y2} (14)

V'' =
(15)

(11)

where the constants U and V are given in terms of panel vertex
coordinates by

*/, = y,JK, U2 = -(yL + yK), 1 /3=1 , V, = RARF

V2 = -(RA + RF), V. = (RASF + RFSA) (16)

V, = 1, V, = -(SA + Sr), V6 = SFSA
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Powers of x and y corresponding to constants U and V [Eq.
(15)] are given in Tables 1 and 2. Multiplying by a general
polynomial series, admissible functions for the simply sup-
ported trapezoidal panel are obtained

(17)

where the coefficients qp are the generalized displacements.
Substituting the expression for FB9 from Eq. (15), we can
write

(is)

The admissible functions are thus expressed in terms of
simple polynomials, where the pth admissible function [Eq.
(2)] is given by

/„,,,., = (19)

Stiffness Matrix
Polynomial description of skin layer thicknesses in terms

of the global x-y coordinates was given in Eqs. (10) and (11).
This thickness distribution is for an entire wing box, or seg-
ments of the wing box. The panels analyzed for buckling are
those trapezoidal skin segments defined by the supporting
internal spar/rib array (Fig. 1). For each such panel containing
NL layers of fibers, the in-plane stiffness matrix [^4] can be
expressed in terms of individual layer thicknesses and fiber
orientation angles as

NL

l[Go] + 26, + [Q2]cos 40,

[<2_,]sin20, + [Q4]sin 46} • tl(x^ (20)

where the matrices [Q0] to [Q4] depend on material invariants
Um\-> Um 2* ^4i3» ^W4» Ums an^ a general material matrix for
a layer with fiber direction 6 is

[G]

+

ri/m, f/,,,4 O n rl 0 On
= t/,,,4 Uml 0 + f/,,,2 0 -1 0 cos(20)

L o o um5] LO o oj
r 1 -1 O n

t/,,, -1 1 0L o o -ij
cos(40)

=Let a material and fiber orientation-dependent matrix
[G(0/)L a 3 x 3 matrix, be defined as

= {[Go] + [Gilcos 26, + [G2]cos 46,.
[Q3]sin 26f + [Q4]sin 46,} (22)

The in-plane stiffness matrix [A] can now be expressed in
terms of the sizing design variables T] and fiber directions, as
a polynomial

NL Ni
[A] = 1,1,

/ = 1 k = \
(23)

For unidirectional, orthotropic, or quasihomogeneous lami-
nates7'32-35 the in-plane and bending stiffness matrices are re-
lated through

[D] = [A](M12) (24)

Using Eq. (11) to express h2 in terms of sizing-type design
variables, double summation is needed. The indices II and 12
are used for summation of polynomial terms associated with
each layer, as follows:

NL Nn . . NL Nn
Vv,= I 2 7-{| •*«>•?<»«> = £ 2 r;i-;

/I = 1 71 = 1 /2= 1 /2=1

(25)

The bending stiffness matrix [D] can now be written in
polynomial form as

1Z / = ! l / 2 = 1 A r = l 71 = 1 72 = 1

(26)

The dependence of [D] on the sizing design variables (thick-
ness coefficients) and fiber angles is now expressed in explicit
form. With the polynomial Ritz functions presented in Eqs.
(2) and (19), and the stiffness matrix based Eq. (7), expres-
sions for terms of the stiffness matrix in polynomial form can
now be derived. Elements of the matrix [F3] [Eq. (4)] in
polynomial form are generated first, as follows: Second de-

Table 1 Constants U,- and V, and their corresponding
powers of x and v, associated with the admissible

displacement series function FB

u,,

+ u,,

3 !13 ML 0 |
0
0 -
-1

row of

matrix
1
2
3

sin(20)

]-
sin(40)

Table 2

U,Vj(m* +
U-V-(n" +
U V (mv +

/ ^y ^/

i v, o
2 y, i
3 V, 0
4 V4 2

<21> - 6 v! i
Coefficients and powers of polynomial terms in the [F3]

coefficient power of jc

mp)'(rnvj + m™ — 1) mj + my — 2
nvj + n£)-(n'! + «J + ny - 1) mj 4- my
m»')'(n'/ + «; + n-) m; + m; - 1

n] i U,

0 1 U,
0 2 £/,
1 3 f/3
0
1
2

matrix

power of y
n« + ny + ^H.
«y + n; + «; - 2
rc? + nj + ny - 1

n11.
0
1
2

Note: If any of the power of x and y from columns three and four is less than zero, the corresponding F^ element
is set to zero.
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rivatives of the fp [Eq. (19)] functions are expressed in
polynomial form:

/„„ = 2 2 ITO»; + ™;)K + m? - !)
/ = ! 7 = 1

(27)

Note that f p x x = 0, if mv
} + mw

p < 1 (representing second
derivatives of zero-order or first-order terms). Similarly,

/„,, = ^nt + nj + «;)(«;< + nj + n~ - 1)

where/,, vv = 0, if n" + rcv
y' + nw

p ^ 1. Finally,

2/V.w = 2 2 E UiVj(m] + m;)(«;' + w; + nfi
i = 1 / = 1

In the last expression the term/;, vv is set to zero in two cases:

2fpjcy = 0 if mj + my - 0 or /i;1 + n; + ny = 0

The elements of the [F3] matrix are, thus, all polynomials,
and the q,p element of [F3] can be written as

3 6

^3«,» ~ 2~t 2~t /•/• -^ ijy i} (.*u)

where the coefficients FJf and corresponding powers of x and
y, ra/y and nf/f, respectively, are shown in the Table 2.

Equation (30) together with Eq. (26) are substituted into
the equation for the stiffness matrix [Eq. (7)]. The r,sth term
of the stiffness matrix is

f f (^,rDahF3^ d* dy (31)
J J

and the final expression for the Krs element in polynomial
form is

3 3 3 6 3 6

(32)
where the powers of the x and y terms in the area integral
are

mr, = m/;j + ra/t;/ + ml + raft + mg

All elements of the stiffness matrix are, thus, linear com-
binations of integrals over the panel's area of the form

/TRC,^) = J Jarea *m (33)

Note the explicit dependence on thickness coefficients and
fiber directions. Dependence on panel shape is more complex.
The coefficients Uf and V} [Eqs. (16)] depend on the x, y
positions of the vertices of the panel. These coefficients, in
turn, determine the F coefficients in Table 2. In addition, the

area integrals [Eq. (33)] depend on the shape of the panel,
since the polynomial terms are defined in global (physical)
coordinates, and the limits of integration change when the
planform shape is changing. The integrations [Eq. (33)] can
be carried out analytically, as shown in detail in Refs. 23, 25,
and 27.

Geometric Stiffness Matrix
In-Plane Loads from Wing Box Stress Analysis

The geometric stiffness matrix in the Rayleigh-Ritz buck-
ling analysis formulation for skin panels is given in Eq. (8),
and it depends on the matrix [F2] [Eq. (3)], containing deriv-
atives of the admissible functions, and the matrix [N] con-
taining the in-plane loads. In classical linear buckling analysis
of the panel, these in-plane loads are assumed given, and they
are determined by a separate stress analysis of the wing box,
before the buckling analysis for the panel is carried out. In
the case of wing structures, wing box stress analysis can be
based on standard finite element techniques. In this case, in-
plane forces along the sides of the panel are obtained by some
functional approximation based on either nodal forces acting
on nodes surrounding the panel, or in-plane stresses evaluated
for the finite elements surrounding the panel. Alternatively,
based on stress distribution in the panel, in-plane loads for
buckling analysis can be evaluated throughout the panel, to
be integrated over the area of the panel to obtain the matrix
[KG] (Refs. 8-10, 12, 15-17, 33, and 34).

For preliminary design purposes, if the skin panels are small
relative to the wing, buckling evaluation may be accurate
enough if average Nx, Ny, and Nxy are used for the panel
buckling analysis. These in-plane stresses are assumed con-
stant throughout the panel in this case. This simplifies the
integrations in Eq. (8), and makes it possible to use interaction
formulas for fast approximate buckling analysis.10-16-33

When an equivalent plate modeling approach is used for
the wing box analysis,21^23 the in-plane skin stresses are ob-
tained from the wing generalized displacements calculated in
the wing box stress analysis stage. In the formulation used in
Refs. 21-23 admissible Ritz functions for the wing box anal-
ysis are given as polynomials in x and y [the global coordinates
used to define the planform of the wing and the shape of all
panels (Fig. 1)]. In this case, the transverse displacement of
the wing is

= 2 (34)

where a bar will associate variables with the wing box analysis.
In Eq. (34), the powers m;, nh and the number of terms Nw
are known from the Ritz series used for the wing box dis-
placement solution. The coefficients qh are the generalized
wing box displacements. Multiple load cases can be accounted
for in the wing analysis, leading to different generalized dis-
placement vectors {</}.

In equivalent plate wing structural analysis based on clas-
sical plate theory,21^23 the vertical displacement under loading
is W(x,v), and using Kirchoff s kinematics for a wing with a
symmetric cross section, the engineering strains in the x and
y directions are given by (Ref. 2, p. 19)

dx

= = -zWdy

= -2zW,xy

(35)

Let the wing depth be given by H(x v } . Then, when skins
are thin compared to the depth, they can be assumed located
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at z = ±H(X y)/2. Focusing on the upper skin, in-plane strains
are [Eqs. (35)]

(36)

Now, in a polynomial-based formulation for the wing box,
the depth of the wing is given in polynomial form

. Y(mhih) (nhih)X J (37)

Since the displacement W(xiV) and the depth H(x y} are
polynomial, it is evident [Eq. (36)], that skin strains due to
wing deformation are polynomial too. There are a total of NL
layers, each with fiber direction 0h and thickness as described
by a polynomial equation [Eq. (10)]. The in-plane skin stresses
in each layer are obtained from the strains by [Eq. (22)]

(38)

The in-plane loads can now be found in terms of wing box
displacements by integration through the thickness of the panel:

dz

(39)

(Nx} r fffxx^ ( f exi M = I *- \dz = J [^>] ^
UVJ Jj UJ ^ [jTy

leading to [Eqs. (20-23)]

[£,.,,] w

(40)

We now turn to the derivatives of the wing displacement,
in order to express Eq. (40) in terms of the generalized dis-
placements {q} calculated for the wing box solution. We de-
fine a new vector [a] of wing box curvatures as follows:

mpw(mpw —
npw(npw — '.

(41)

where pw is an index for the pth element in the wing Ritz
series. There are Nw terms in the Ritz series for wing dis-

placement [Eq. (34)]. The matrix associated with {a} in Eq.
(41) is, thus, 3 by ^V^. Each element of this matrix is of the
form We/w^p

w-pw}'y(*tlw'pw), where the coefficient Wqw p
and powers of x and y, mclw^pw and nqwpw, respectively, are
described in Table 3. When the index qw denotes the row of
the matrix (its values varying from 1 to 3) and the index pw
specifies terms of the polynomial displacement series for the
wing box (varying from 1 to Nw), then [Eqs. (40)], the in-
plane load Nx for the panel can be expressed in polynomial
form as

pw=\

leading to

LJ 3 Mr
— _ V V**x ~ /-) 2~i Z-i

£ qw=1Pw=l

Similarly, the expressions for Ny and Nxy can be derived:

H ^ %\7 — — — N N
v /•* / -< / v

r r 3 Mr
li -sr^. \^\

-Ww VV

(42)

(43)

= — H11 (44)

Now the polynomial expression for wing depth [Eq. (37)]
can be substituted into Eqs. (42-44). The general expression
for terms of the [N] matrix

[N] - [£ X:]L *-v v J

-j M-i 3 Mr

1/1= 1 qw= 1

A • W • 1-f • v (/w* +'"
S*ppp,qw ™ qw^pw nih X

x y^+'V,-).^ (45)

The indices pp and gg can be either 1 or 2. Note

If PP = 1 an<^ W = 1» tnei1 ^p/7,^»V = ^I^IV

lfpp = 2 and qq = 2, then Appp^qw -

When pp ± qq, Appp^qw = 2A^W

(46)

The polynomial expression for the [A] matrix [Eq. (23)] is
now used:

(47)V A7 . Ti . n Y(mil> + mtlk + f^ciw,pwX n-ih L k Qpw*

Table 3 Elements of the matrix {«}; coefficients and powers of x and y

</w = 1, row 1 of the matrix
qw = 2, row 2 of the matrix
qw = 3, row 3 of the matrix

mw — 2
npw(npw - w ~ 2
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where the index ppp means the following:

If pp = I and qq = 1, then Qppp,q
If pp = 2 and qq = 2, then Qppp^

When pp ± qq, Qppp,qw = 2

where

= Qi,qw

(48)

The matrix [N] can then be expressed as a polynomial in
x and y according to Eq. (48). This equation shows how [N]
depends on the wing box solution, the depth of the wing, the
thickness coefficients for layers in the panel, material prop-
erties, and fiber directions. Of course, the wing solution {</},
also depends on depth, thickness of layers, fiber directions,
and material properties. These affect the stiffness matrix of
the wing as described in Refs. 21-23 and 25-27. It should
be emphasized again, that polynomial in-plane loads for the
buckling analysis, can be obtained in a similar manner from
wing box analysis based on first-order shear deformation plate
theory27 or from finite element results, when skin stresses are
approximated by polynomials using least-square fitting.35

Geometric Stiffness Matrix
Based on the Ritz polynomial functions [Eq. (19)], the

matrix [F2], needed for evaluation of the geometric stiffness
matrix [Eq. (8)], can be written in polynomial form as follows:

Derivatives with respect to x and y of the Ritz functions are

/,,., = 2 2 u,v,(m?

„,. = 2 2 u,v,(n^ + n'/
/ = ! / = !

(50)

Thus, the element q, p of the matrix [F2] is of the form
3 6

/? — V V Fq-p (m/2//'-/?) ("/2rP)
•* 2(c/,p) / J / J " 2/,y y

The coefficients F^y and powers of x and y, mf2q.^ and
rc/2-'/7, defining the elements of the [F2] matrix, are described
in Table 4. Elements of the matrix [KG] can now be expressed
in polynomial form as follows:

KGr., = 1 1 2 2 F^N^F^ dx dy
J J a==i h=\

(52)

The indices r and s identify terms in the panel Ritz dis-
placement series for the panel. Using polynomial expressions
for [F2] and [TV], the r, s element of [KG] is written as

1 2 2 3 6 3 6 Afo 3 Nw

KG,S = - ^ 2 2 2 2 2 2 2 2 2
Z a = l b = 1 / = 1 )'•= 1 t = 1 J = 1 ih=\ qw=\ pw=\

N/ A///

= 2 2
it=l k=\
2 2 ^;V^VGm..^(»//)-w^.P--H'*-:r*

= 1 A:= l

^ " I I x(mGr.s) y(nGr.s) ^Jj^- ^Jy (53)

nGrjl = ft/2;; + ft/2^; + nih + < + ft,vv,pvv
(54)

The index /?/?/? used in Qppp^w(0it) is defined in Eq. 48. As
in the case of the stiffness matrix [K], the geometric stiffness
matrix is represented as summation of surface integrals of
polynomial terms calculated over the area of the panel. In-
tegrals of the same family /TR(m, ft) are used [Eq. (33)], where
the powers of x and y are determined from Eq. (54). Eval-
uation of these integrals is discussed in detail in Refs. 23, 25,
and 27, and for trapezoidal panels it can be done analytically
using the same subroutines used in the wing analysis and panel
stiffness analysis.

Further Discussion of Integration with Wing Structural Analysis
Recall that the results of the wing analysis affect buckling

analysis of the panel through the in-plane matrix [N]. This
matrix is obtained by integrating skin stresses (due to wing
deformation) through the thickness of the skin, and the re-
sulting Afv, ./Vv, and Nxv are functions of x and y as evident in
Eqs. (45-48). Now, while equivalent plate wing structural
analysis leads to good skin stress predictions in stiff, low AR
wings,21 23 still equilibrium is not guaranteed for isolated skin
panels. Thus, the in-plane loads [as given by Eq. (47)] are
generally not in equilibrium. [This problem is not encountered
when wing analysis is based on the finite element method
(FEM), when in-plane loading on the circumference of an
isolated panel is determined from nodal forces on that cir-
cumference.]

One way to avoid this difficulty and simplify buckling anal-
ysis of panels is to use an average in-plane loading to be
assumed constant over the panel.33 If point (jc(), y()) inside the
panel is used to evaluate these average in-plane loads, then
the elements of [N] become [Eq. (47)]

1

. =
Hpw (55)

The expression for elements of the geometric stiffness ma-
trix [Eq. (53)] has to be modified, since terms including jc0
and y{} become constant for the area integration, and can be
taken out of the integral:

1 2

2 2 %>•*£,•<
N/ A///

2 2
// = 1 A: = 1

x HH, ' Tlt
k' qpw' x ()

m//'+ '"<IW-PW • y ()"'/;

n
X

Analytic Sensitivities
Stiffness Matrix Sensitivities

With the explicit expression of stiffness matrix elements (in
terms of thickness, fiber directions and shape of the panel)

Table 4 Coefficients and powers of terms of the [F2] matrix

q = 1, row 1 of [F2] matrix
q = 2, row 2 of [F2] matrix

rip + n" + nvj
rip + n" + nvj - 1
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available in the form of Eq. (32), it is straightforward to obtain
sensitivities analytically. Three types of sensitivities can be
evaluated: 1) sensitivities with respect to thickness design var-
iables, T'k\ 2) sensitivities with respect to layer orientation
angle, 0,; and 3) sensitivities with respect to planform shape
variables.

Stiffness Sensitivities with Respect to Thickness Design Variables Tj.
Planform shape variables and orientation angles are fixed

in this case. The thickness coefficients Tk appear in the expres-
sion for the stiffness matrix [Eq. (32)] explicitly in a triple
summation over the indices k, 11, and 12. Sensitivity is then
obtained by direct differentiation, noting that if the design
variable involved is T?, then dT'kldTq

r = 1 only when / = q
and k = r; otherwise, the derivative is zero.

Sensitivities with Respect to Fiber Direction 0,
Now the planform is fixed and thickness is fixed. The angle

0, represents the direction of fibers in the rth layer, and the
stiffness jnatrix Krs depends on 0, through elements of the
matrix [Q(0,)] [Eq. (22)]. The derivative of each term in the
stiffness matrix will be calculated in the following manner. In
the summation [Eq. (32)] over / = 1 to= NL, all matrices
[Q(0,)] are set to zero, except the matrix [<2(0,)] correspond-
ing to the 0, variable considered. This particular [<2(0/)] is
replaced [in Eq. (32)] by the following expression [Eq. (22)]:

- - -2[G1]sin20/- 4[Q2]sin40/

2[Q3]cos 20, + 4[Q4]cos 40, (57)

Equation (32) is, thus, used for the sensitivity of the stiffness
term, with the derivative Eq. (57) replacing [Q(0/)].

Stiffness Sensitivities with Respect to Panel Planform Variables
yL> yK, XI-L, XFR, XAL, andxAR (Fig. 1)

Thickness coefficients and orientation angles are held fixed.
The terms Krs of the stiffness matrix depend on the planform
through matrix [F3] [Eq. (30) and Table 2] and the integrals
A-R(,W,«) [Eq- (33)]. Coefficients £/,- and Vf are defined through
expressions (16) and (18). If x is any planform design variable,
then

dFlP dU, r, —- - (integers in Table 2) (58)

Through Eqs. (16), the terms Uf and V-} are given explicitly
in terms of the panel shape design variables. Analytic sensi-
tivities of Uf and Vj are obtained by direct differentiation.36

For example, derivatives with respect to XFR are calculated as
follows:

dUl dU2 dU3 dV4

The derivatives of the terms F^ can now be prepared [Eq.
(30), Table 2]. The tables for the derivatives d/TR/d;t are pre-
pared using Refs. 23 and 25. It should be noted that in eval-
uating the shape derivatives of these integrals there is no need
for more integrations over the panel's area. The shape sen-
sitivities of the area integrals are linear combinations of other
members of the same table of integrals, a table already avail-
able from the analysis step.

After collecting all the information necessary, one can cal-
culate the derivative of the term Krs as follows:

3 3 3 6 3 6 NL Ni NL Ni Ni\ Np -i

2 2 2 2 2 2 2 2 - 2 2 2 2^
„= 1 b= 1 ( -= / / - ! , -=!/=! i-l (1 = 1 (2=1 k-\ l\ -1 12-1 1̂

dFa-: dFt-n =
-^ F% + FZ -^ J • Gfl,fc(0,

dx

• T',\ • T% • 7TR(,,,,n)

(59)

Geometric Stiffness Matrix Sensitivities

Geometric Stiffness Sensitivities with Respect to Thickness Design
Variables Tj.'

The design variable in this case is the kth coefficient in the
polynomial thickness series for the /th layer. Examination of
Eqs. (53) and (54) reveals that the geometric stiffness matrix
is explicitly linear in the thickness coefficients T//. It is, of
course, also dependent on those coefficients via the wing box
solution {</}, unless it is assumed that in-plane loads [N] do
not change. Differentiation of Eq. (53), using Eq. (33) leads
to

1 3 6 3 6 Ni,

. , = - ^ 2 2 2 2 2 2 2 2 2 £ 2
O I k Z (,= 1 b= 1 / = 1 /= 1 / = 1 ./= 1 ih= 1 qw= 1 pw= 1 R= 1 S= 1

x Hih (60)

where r££ is equal to 1 only when it = R and k = S. Other-
wise, it is zero.

Geometric Stiffness Sensitivities with Respect to Fiber Direction 6ir

Layer orientations affect the geometric stiffness matrix
through the material matrices Qppp^qw(6it) and the wing box
generalized displacements {</}. The analytic sensitivity with
respect to fiber direction in a given layer is

-yL
3 Nw NL N

2 2 Z
qw=\ pw=\ itt=l k

-yL

-yL „ „ ._L———— ^ + KA

dV5 I

«Gr,) (61)

Geometric Stiffness Sensitivities with Respect to Planform Variables
yL, yK, XFL, XFR, XAL, and XAR

Thickness coefficients and orientation angles are held fixed.
The geometric stiffness matrix KG depends on the planform
variablesjhrough Uf and Vj terms [Eqs. (15) and (16)] in
F,;''rand F2

h.:s.. [Table 4 and Eq. (51)]. There is also a depen-
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dence on the area integrals 7TR [Eq. (33)], since those are
evaluated over the planform shape of the panel. Thus,

1 qw=\ pw=\ it= 1 k= 1

(62)

where x represents any of the planform variables, and the
powers of integrands in /TR(,»,») are m = mGrs and n = nGrs
[Eqs. (54)]. In Eq. (62) it is assumed that overall wing plan-
form is fixed, and panels are changing shape and location due
to moving of control surfaces, ribs, and spars. If overall plan-
form shape of the wing is changing, then derivatives of the
wing depth coefficients with respect to the shape design var-
iables, 8Hih/dx, must be added, since the wing depth is defined
in global x, y coordinates [Eq. (37)].

It is clear, examining the analytic sensitivities of stiffness
and geometric stiffness derived in the previous sections, that
all involve area integrals of polynomial terms over the panel's
area. Since members of the family of integrals /TR(m,w) are
generated for the analysis stage, there is no need to generate
them again for the sensitivity calculation stage. No numerical
integration is needed, therefore, for either analysis or sensi-
tivity calculations. This is similar to the process by which
analytic sensitivities are obtained for the wing box analysis.25

A table of area integrals over the wing surface has to be
generated once (using the same analytic formulas used here
for the panel). The integrals are subsequently used for wing
box analysis and sensitivities.

Of course, when the wing changes shape, panels change
shape too. There is linking, therefore, between overall wing
planform design variables and panel vertex locations. This
linking has to be accounted for in the sensitivity computations
when overall wing/panel shapes are changing.

When constant in-plane load matrix [N] is assumed for the
panel buckling analysis, and when it is based on evaluation
of in-plane loads at a point (jc(), y()) on the panel [Eqs. (55)
and (56)], then when shape sensitivities are required, the
motion of point (jc0, y(}) when the panel changes shape has to
be taken into account.

Eigenvalue Sensitivities
Now that the sensitivities of the [K] and [KG] matrices

(dKGrs/dx and dKr^sldx) are available analytically, the sensi-
tivity of buckling eigenvalues, and, hence, the sensitivity of
buckling constraints is given by

•'(¥•\ dx
+ A a[^c]

az
dx dx

(63)

This analytic sensitivity can be used to construct direct,
reciprocal, or hybrid approximations of the constraint.37 Al-
ternatively, the sensitivities of [K] and [KG] can be used in a
Rayleigh quotient approximation,38-39 where, based on direct
or reciprocal approximations, approximate stiffness [K*prx] and
geometric stiffness [A^;prx] matrices are constructed. In this
case

Test Cases and Results
To assess the new capability, test cases were chosen to

address the following issues: 1) convergence rate with in-
creased polynomial order (fast convergence using low-order
polynomial Ritz functions is important not only to avoid ill
conditioning, but also to reduce computational resources needed
for design optimization); 2) accuracy of analysis results for
isotropic and anisotropic panels of general shape (rectangular,
skewed, and triangular shapes were studied); 3) reliability of
analytic sensitivities and accuracy of finite difference deriv-
atives; 4) quality of conventional approximation techniques
based on first-order sensitivity analysis in the presence of
shape variations; and 5) integration of wing box structural
analysis with panel buckling analysis for fast structural analysis
of airplane wings.

Analysis results from Ref. 3 are used to test accuracy and
convergence rate of the present technique in the case of rec-
tangular anisotropic panels. Simply supported, angle ply lam-
inates made of 20 plies of DLP material3 with a = 5 in., b =
10 in., and combined in-plane loading consisting of Nx = 1,
Ny = 1, and Nxy = 1, are considered. Figure 2 shows con-
vergence of the buckling load (the critical eigenvalue) as a
function of the order of polynomial Ritz series Nw [Eq. (17)].
Figure 3 shows critical buckling eigenvalues, calculated with
Nw = 4 (15-term complete polynomial), for cases in which
the fiber orientation angle varies. Good accuracy and fast
convergence are demonstrated. With only 6 terms (order 2)
the present results are only within 3% error of Ref. 3 results.
For automated synthesis, where the need to have very fast
analysis and sensitivity results is critical, this fast convergence
makes it possible to use low-order models without sacrificing
accuracy too much.

Skewed geometries with isotropic simply supported panels
are examined next, and results are compared to those of Ref.
20. Figure 4 shows critical buckling eigenvalues for isotropic
plates with various skew angles. The alb ratio for the plates
is 1, and the thickness over b ratio is 0.001. All aluminum

•JT 2 :

If1'8:
& CO

>1.6-
« §
0> .S*-! A.E 5 1 - 4 "
2 o> :
» gl.2<
•° £
S-s 1 ~* £
3 ̂
Q. n o

o rectangular, anisotropic (Ref. 3) i
] Q triangular, isotropic (Ref. 41) ''

3 8

— „ „ „ « „ !

order of polynomial
Fig. 2 Convergence of critical buckling eigenvalue for a 30-deg angle
ply rectangular panel in combined in-plane loading, and an isotropic
triangular panel under uniform in-plane pressure.

700

i + (64)
fiber orientation angle (deg)9°

Fig. 3 Critical buckling eigenvalues for rectangular angle-ply panels.3
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700 -T

250
0 11.25 22.5 ..33.75skew angle (deg)

Fig. 4 Critical buckling loads for isotropic skewed panels.

130 -
~ - - Ref. 20

STAGS (Ref. 20)
Ref. 40
present

!0 , 25 30 35 .skew angle (deg)
Fig. 5 Critical buckling loads for anisotropic skewed panels.

• computed
lay lor - direct

b (3in) 4

Fig. 6 Critical buckling load for trapezoidal isotropic panels of vary-
ing shape.

plates are analyzed with a = b — I m. Uniaxial compression
of Nx = I is applied.

In Fig. 5, the combined effects of skew angle and anisotropy
are examined, and the present results are compared to Ritz
and finite element results from Ref. 20, and to results from
Ref. 40. Orthotropic panels with a = b = 1 m, thickness of
0.001 m, a ratio of DU/D22 = 5 and D66/D22 = 0.5, are
examined. Using the lay-up, thickness, and material distri-
butions allowed in the present analysis, equivalent panels are
created to match those in Refs. 20 and 40. Compressive in-
plane loads of Nx = Ny = 1 and a shear load of Nxy = 0.5
were applied. Accuracy of the present results, obtained with
a 15-term Ritz polynomial [Eq. (17)], is good, and the effects
of anisotropy and skew angle present no difficulty.

Buckling results for a simply supported aluminum sym-
metric trapezoidal panel, in which one of the sides shrinks in
size, are shown in Fig. 6. Uniform in-plane compression (Nx
= Nv = 1) is applied. Starting with a rectangular geometry,
the figure shows how the critical buckling eigenvalue varies
until the trapezoid becomes a triangle. With analytic shape
sensitivity with respect to the trapezoid's upper side (obtained
as described in this article), direct Taylor series approxima-

tions are constructed37 and shown in the figure. The reference
design used is the triangular design (upper 6 = 0). The present
capability is fast [10 Ritz terms are used in Eq. (17)] and
reliable in both analysis and sensitivity computations.

Accuracy, behavior sensitivity, and Taylor-series approxi-
mations for triangular panels of variable shape are shown in
Figs. 2 and 7. Simply supported equilateral aluminum panels
are analyzed for buckling, and the effect of varying ratio of
altitude to base (alb) is examined.33 A typical convergence
study for the case of an equilateral panel is shown in Fig. 2.
Fast convergence is achieved to the result of Ref. 41, allowing
the use of low-order models in subsequent studies. In Fig. 7,
the variation of critical buckling eigenvalue with changes in
alb is shown. "Exact" results (obtained with 10 Ritz terms)
are shown, as well as direct and reciprocal Taylor series ap-
proximations based on analysis and analytical sensitivity at
the reference design (alb = 1). Rayleigh quotient approxi-
mations (RQA) are also shown. They perform quite well for
values ofa/b greater than the reference value. However, when
alb is smaller than the reference value, both RQA approxi-
mations fail beyond a 10% move limit. This approximation
failure is similar to the problems encountered when aeroser-
voelastic poles are approximated in wing planform shape syn-
thesis based on the equivalent plate approach.42 Resolution
of this problem and improved approximations for the case of
planform shape variations, is beyond the scope of the present
article, and will be reported separately.

Figure 8 shows comparisons of first-order finite difference
sensitivities to analytic sensitivities obtained with the present
formulation. The rectangular panel used for the convergence
studies of Fig. 2 is used here. Design variables are thickness,
fiber angle, and two shape variables, YR and XFR (see Fig.
1). Results were obtained with 10 Ritz terms. As can be seen,
reliable finite difference sensitivities can be obtained with step
sizes between 0.001-0.1%. It should be recognized that when
simple polynomials are used for Ritz wing box analysis,25 ill
conditioning can lead to situations in which no reliable first-

0.4 0.8 1.2a/b 1.6

Fig. 7 Taylor series and Rayleigh quotient approximations for critical
buckling loads of triangular panels of variable shape.

. .
normalized step size (%)

Fig. 8 Accuracy of finite difference derivatives of panel buckling
eigenvalue with respect to sizing, fiber orientation, and shape design
variables.
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-2 -1 1 2 3
X (m)

Fig. 9 Fighter-type wing, its spar and rib arrangement, and panel
analyzed for buckling.

——— variable Nx,Ny,Nxy (from wing {q})
- - - fixed Nx,Ny,Nxy at (xO,yO)

• direct Taylor for variable Nx,Ny,Nxy

(0
.20.3
'SI 5.. 10 .15 . 2 0 . 25 . 3 0 .o aileron chord 7 wing chord

Fig. 10 Variation of critical panel buckling eigenvalue due to changes
in wing spar locations.

order finite difference sensitivities can be obtained due to
severe roundoff errors. This is not the case here, as Fig. 8
shows. This, and the fast convergence demonstrated, indicate
that there are practically no ill-conditioning problems using
simple polynomials in the present panel buckling analysis.

We next move to examine the integration of panel buckling
analysis and sensitivity computations as presented here, with
a wing box structural analysis based on the equivalent plate
approach. As has already been discussed, the main appeal of
the equivalent plate approach in wing structural analysis is in
the simplicity of modeling and speed of computation, both
extremely important for efficient multidisciplinary wing op-
timization. A fighter-type all-aluminum wing is shown in Fig.
9, together with the array of spars and ribs of its internal
structure. A 3.5% parabolic airfoil is used. An airplane weight
of 25,000 Ib is assumed, and the wing is loaded in a uniform
manner to support a 9-g pull-up maneuver (multiplied by 1.5
for safety factor). Skin thickness over the wing varies linearly
from root to tip, t(x, y) = 0.015-0.0026y (m). Shape variation
of the internal structure is due to changes in the position of
the rear spar, supporting a flaperon. As the flaperon chord
to wing chord ratio varies, the design variable XCL (Fig. 9)
changes. With the spars linked to each other to be equally
spaced between XFL and XCL, all the spars move as a result
of changes in XCL. We focus on one skin panel, shown in
Fig. 9. Its change in shape and position, as the flaperon grows
from 5 to 35%c is shown in Fig. 10.

The wing box analysis in this case is based on a 10-term
Ritz polynomial satisfying cantilever boundary conditions at
y = 0 (Ref. 23). Ten terms are also used in the Ritz series
for the panel buckling analysis [Eq. (17)]. Analytic sensitiv-
ities of wing box response are discussed in Ref. 25. Analytic
sensitivities of panel critical buckling eigenvalue were ob-
tained by the technique described here.

In Fig. 10, critical buckling eigenvalues for the panel are
shown as a function of global changes in the wing structure
(flaperon chord size). The in-plane loads are obtained from
stresses in the skin predicted by the wing analysis. When
constant Nx, Ny, Nxy are used (based on their values at the
center of the panel JCG, yc)), buckling eigenvalues are smaller
compared with the case, in which Nx, 7Vy, and Nxy vary in a
polynomial manner throughout the panel [as obtained from
Eq. (45)]. The difference is smaller when the flaperon's chord
is smaller. In that case, the panel is bigger and moves from
the front to the center chord of the wing, thus carrying a
larger in-plane load. An approximation based on direct Taylor
series is shown in Fig. 10. No difficulties are encountered in
the integration of wing analysis and sensitivity with panel
buckling analysis and sensitivity computations, thus demon-
strating the feasibility of combining two efficient modeling
techniques for wing multidisciplinary design synthesis.

Conclusions
An efficient technique for computation of skin panel buck-

ling constraints has been presented, tailored to the needs of
multidisciplinary wing optimization. The formulation used,
based on Ritz structural analysis using simple polynomials,
makes it possible to obtain analytic sensitivities of buckling
constraints with respect to shape, as well as sizing and fiber
orientation design variables. No numerical integration is re-
quired. Closed-form expressions for stiffness and geometric
stiffness matrix terms make it possible to identify dependence
of those matrices on sizing, fiber angles, and shape design
variables. Integration with equivalent plate wing structural
analysis is natural, and the details have been described.

Numerical tests of the new capability, covering cases of
rectangular, triangular, trapezoidal, and skew shapes with and
without anisotropy, all demonstrate high accuracy and fast
convergence. The fact that the derivation was done for simply
supported boundary conditions presents no practical limita-
tion, since edge rotational restraints with varying stiffnesses
can be imposed through the addition of rotational springs
along the boundary.23 With the availability of analytic sen-
sitivities, it becomes possible to assess the accuracy of finite
difference sensitivities, and to construct Taylor series and
Rayleigh quotient approximations. First-order Taylor series
and Rayleigh quotient approximations based on direct and
reciprocal variables were examined for the case of shape var-
iation.

As the results presented here show, if some accuracy of
analytic predictions can be sacrificed for the purpose of mul-
tidisciplinary preliminary design synthesis, then panel buck-
ling analysis and sensitivities, using only 3-6 Ritz polynomial
terms, can be obtained very efficiently. When integrated with
wing structural analysis, aeroservoelastic analysis and aero-
dynamic loads and drag prediction,23 the present buckling
analysis capabilities add an important element to the inte-
grated multidisciplinary design synthesis of actively controlled
fiber composite wings.
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